Multi-Agent Deterministic Graph Mapping via Robot Rendezvous

Chaohui Gong, Stephen Tully, George Kantor, and Howie Choset

Abstract—1In this paper, we present a novel algorithm for
deterministically mapping an undirected graph-like world with
multiple synchronized agents. The application of this algo-
rithm is the collective mapping of an indoor environment
with multiple mobile robots while leveraging an embedded
topological decomposition of the environment. Our algorithm
relies on a group of agents that all depart from the same
initial vertex in the graph and spread out to explore the
graph. A centralized tree of graph hypotheses is maintained to
consider loop-closure, which is deterministically verified when
agents observe each other at a common vertex. To achieve
efficient mapping, we introduce an active exploration method in
which agents dynamically request rendezvous tasks from other
available agents to validate graph hypotheses.

I. INTRODUCTION

For mobile robots to effectively navigate unknown envi-
ronments, a map of the surrounding environment must be
incrementally built during exploration. In the majority of
existing literature, this task is referred to as simultaneous
localization and mapping (SLAM). The goal of SLAM is
to concurrently estimate the most likely pose of the mobile
robot while efficiently constructing an environment map.

The typical approach to SLAM is to, in a metric sense,
maintain a probability distribution over the joint space of
maps and poses [1]-[3]. But an alternative approach is to
represent the environment topologically [4]-[7]. Topological
maps represent the environment as a graph whose vertices
define interesting places in the map and whose edges define
feasible paths between places [5]. The goal of topological
SLAM is to automatically detect the interesting places in
the map and determine the connectivity of the graph through
perception and graph inference.

For topological SLAM, when a single robot is mapping a
graph-like world, ambiguity can present itself when a robot
closes a loop (returns to a previously visited vertex). A
common way to solve this problem is to maintain multiple
hypotheses when ambiguity occurs (via a hypothesis tree
expansion algorithm) with the hope that eventually all but
the true graph will be eliminated from the set of generated
hypotheses upon receiving distinguishable measurements.
This technique is adopted in [8]-[11].

In general, topological SLAM is solved probabilistically,
with the likelihood of map hypotheses dependent upon
the measurements that are obtained when the robot travels
through the environment [8]. But for a more guaranteed

S. Tully is with the Electrical and Computer Engineering
Department at Carnegie Mellon University, Pittsburgh, PA 15213,
USA. C. Gong, G. Kantor, and H. Choset are with the Robotics
Institute at Carnegie Mellon University, Pittsburgh, PA 15213,
USA, {stully@ece, chaohuig@andrew, kantor@ri,
choset@cs}.cmu.edu.

CMU Wean Hall Floor 6

Fig. 1. This is an example of a topological graph that can be determinis-
tically mapped using our exploration algorithm.

approach, there is a body of work that instead explores a
deterministic solution to graph mapping with a single mobile
robot [12], [13]. For this approach, the way that loop-closing
ambiguity is avoided is with a somewhat theoretical but
arguably impractical solution: the robot is given a pebble
or marker that can be left behind at graph vertices so that
upon revisiting a vertex, the robot will recognize the marker
and loop-closure can be deterministically verified.

This begs the question: what if a second robot could take
the place of the marker that is used in the single robot case,
thus in a sense, acting as an independently movable marker?
In this case, what was once an impractical solution with a
single robot, is now a practical opportunity to leverage the
cooperation between two or more mobile agents mapping a
graph-like environment. This approach has been discussed
previously in [14]-[17]. The algorithms presented thus far
focus on developing strategies for mobile agents to meet at
vertices in the graph (robot rendezvous [15]) to share map
and sensory information in a way that leads to deterministic
graph inference.

Most of the existing topological mapping algorithms for
multiple robots rely on either the usage of markers or simple
rendezvous. Das et. al. in [14] assume the environment has
whiteboards associated with each vertex that can be marked
by agents passing through the vertices to eliminate ambiguity.
Other similar algorithms require the existence of markers
in some form to verify the true graph structure [16]. Other
algorithms require robot rendezvous to share information and
to clarify ambiguities [15], [17]. For example, the algorithm
proposed by Dudek et. al. [16] has multiple robots explore an
environment for an agreed-upon interval, and then the robots
return to a common location to merge their individual partial
world model.

In this paper, we present a novel algorithm for determinis-
tically mapping an undirected graph-like world with multiple
synchronized agents. The algorithm relies on a group of
agents that all depart from the same initial vertex in the
graph and spread out to explore the graph. A centralized tree
of graph hypotheses is maintained to consider loop-closure,
which is deterministically verified when agents observe each

Fig. 2.
crossing edges.

other at a common vertex. To achieve efficient mapping,
we introduce an active exploration method in which agents
request rendezvous tasks from other available agents to
validate a graph hypothesis. We validate our approach with
experiments in an office-like environment, see Fig. 1.

II. GRAPH REPRESENTATIONS AND HYPOTHESIS
EXPANSION

With careful exploration, multi-robot graph mapping can
be formulated as a deterministic exploration process. The
reasoning is that via robot rendezvous, loop-closure can be
deterministically verified. In this section, we describe the
graph representation we use for the exploration algorithm and
how regions of the graph are labeled according to whether
they have been verified as a subgraph of the true map.
We will also discuss a hypothesis expansion method for
proposing loop-closure hypotheses.

A. Graph Representation

As in [8], the topology of an environment can be repre-
sented by an edge-ordered undirected graph, which can be
explicitly defined by the number of vertices in the graph N
and by a set of circular neighbor lists L (one list per vertex),
thus a graph G = (N, L). This representation is similarly
used in [18]. A neighbor list, such as L(v) stores the vertices
in the graph that are neighbors of vertex v in the order that
they occur (counter-clockwise from the first mapped edge).
In Fig. 2-(a), we show an example graph. The vertices are
labeled according to the index of each vertex and each vertex
stores a neighbor list.

B. Representing an Undirected Graph as a Tree

Our algorithm assumes that all agents begin an experiment
at a common vertex in the graph. In Sec. III, we will discuss
the exploration strategy that we use to have the multiple
agents deterministically map the graph. But to support that
discussion, we first must introduce a way to represent an
undirected graph as a tree.

In general, the difference between a graph and a tree is
that there is no loop in a tree. In Fig. 2-(b), though, we
show that the undirected graph depicted in Fig. 2-(a) can
be completely represented by a tree despite having loops, as
long as we insert additional edges (shown as dashed lines) to
account for the loops. We call these additional edges crossing
edges because they typically cross over the tree from one

In (a), an undirected graph is depicted with labeled vertices. In (b) and (c), the same graph is depicted in two different ways as a tree with extra

branch to another. In Fig. 2-(c), it is demonstrated that the
same graph can have two different tree representations. The
goal of our multi-agent mapping algorithm is to find a tree
representation (with crossing edges) that is isomorphic to the
true environment map.

C. Hypothesis Expansion and Loop-Closure

When mapping a graph, our algorithm must maintain
multiple hypotheses of the graph to account for the ambiguity
of loop-closure. For this reason, hypothesis tree expansion,
such as in [8], plays an important role in our algorithm.
During mapping, we incrementally expand and prune the
tree according to the measurements that are obtained. At
each time step, hypotheses that are inconsistent with the
observations obtained by the robots will be eliminated.
Specifically, for a rendezvous situation, if robot R1 can
observe robot R2 at its current vertex location, then all of
the hypotheses in which robots R1 and R2 are not colocated
will be eliminated.

An example is given in Fig. 3. Fig. 3-(a) shows a hy-
pothesis that might be stored in the tree of possible graphs
maintained by the algorithm. When the robots move, there
are two possible hypotheses that are spawned, shown in
Fig. 3-(b) and Fig. 3-(c). The first possibility, shown in
Fig. 3-(b), accounts for the possibility that robot R2 upon
traversing a new edge has closed a loop to another vertex
that has an unexplored edge. Fig. 3-(c), on the other hand,
accounts for the possibility that robot R2 did not close a loop
and is instead located at a newly explored vertex in the graph.
We note that if, after an additional edge traversal, the two
robots were to observe each other at a common vertex, the
loop-closure would be verified and the hypothesis in Fig. 3-
(c) would be discarded.

Based on this hypothesis tree expansion procedure, we
also propose a simple way to decide which part of the
map is reliable. During the expansion of the hypothesis
tree, we always spawn the connected hypothesis as the left
child and the non-connected hypothesis to the right side.
After several rounds of expansions and eliminations, the least
connected hypothesis would be in the bottom right of the
entire hypothesis tree. This organization is important because
when a robot needs to navigate to a desired vertex, this is
the map that will be trusted for use with a graph search
algorithm. The reason for using this hypothesis for navigation
is that it will not be affected by a false loop-closure, and so

Fig. 3. This is an example of the hypothesis expansion algorithm.

a robot can safely backtrack along verified edges.

D. Maintaining the Verified Subgraph

During the execution of our hypothesis expansion algo-
rithm, we maintain, for each hypothesis, the part of the graph
that has been deterministically verified to be a subgraph of
the true map. We then label the remaining nodes and edges
unverified. In Fig. 3-(a), we show the verified component of
the hypothesis with dark (black) lines and the unverified part
of the map with light (gray) lines. Essentially, an unverified
component of the map is converted to verified when two
robots meet at a common vertex and verify a loop-closure
hypothesis.

III. ROBOT STATE AND TASK ASSIGNMENT

A major difference between single robot mapping and
multi-robot mapping is that for multiple robots, cooperation
is required. We are introducing here an exploration algorithm
that is based on robots requesting rendezvous tasks from
other available robots to help verify loop-closure hypotheses.
The problem of assigning a task to the appropriate robot
is the most challenging aspect of this collective approach.
Additionally, it is possible to have one robot that is assigned
several tasks, and thus needs to plan a route to optimally
complete the assigned tasks. We note that some tasks are
more important than others, and thus we are presenting a
method that prioritizes the robot state according to their
current task during the mapping process.

A. Robot State

For our exploration algorithm, each robot has four possible
states at any given point in time: wait, busy, returning, and
exploring. The priority decreases from wait to exploring.

1) Exploring State: By default, a robot without any tasks
assigned to it will be in the exploring state which means
that the robot will travel to unexplored vertices in the map.
If a new task comes in, the robot’s exploring state will be
interrupted and changed to the busy state.

2) Wait State: When a robot R1 arrives at a new vertex
which is similar to a previously visited vertex in the verified
map, robot R1 will wait at its current vertex and generate
new tasks requesting other robots go to the vertex at which

the robot believes it is located (a rendezvous request). When
a robot arrives at the requested vertex according to the
verified map, there are two possibilities. First, the two robots
might observe each other. This would validate a loop closure
hypothesis. The other option is that the robots do not observe
each other and therefore the loop closure hypothesis is
invalid. In the former case, robot R1 will cross back to its
own branch and continue exploring. In the latter case, robot
R1 will add a new node to the verified map and continue
down that branch.

3) Busy State: When a robot is assigned a new task
(for a rendezvous request) and switches from exploring to
busy, it will instantly record its current position as its return
position for future use. Only when all of the assigned tasks
are finished (the robot reaches all of the vertices it is assigned
to), it will change from busy to returning.

4) Returning State: If a robot is in the returning state,
it will navigate to the position stored as return position that
was recorded when the robot switched from exploring to
busy state. Once at this position, the robot can then continue
its normal exploration procedure. Of course, if a new task
comes in at this time, the robot will instantly change to the
busy state once again.

B. Task Array and Task Assignment

When one robot R1 arrives at a new vertex V1 that is
perceptually similar to another vertex V2, a new task is
immediately created. The reason that a new task is required
is that R1 will need to arrange a rendezvous with another
robot to verify loop-closure. So, V2 is added into a task
array. This task array will continually send the rendezvous
request to all robots for one of them to visit that vertex. In
our algorithm, we use a breadth-first-search implementation
to find the closest robot from vertex V2. When the closest
robot is found, we will first check this robot’s state. Except
for the case that this robot is in a wait state, the task will
immediately be claimed by this robot and the task will be
eliminated from the task array. However, if no robots are in
a non-wait state, this task will be kept in the task array and
will wait for the next round of task assignments.

1

R1 R2

Fig. 4. This is an example of when an exploring robot reaches the end of
its own branch.

1) Path for Exploring Robot: We require exploring robots
to move on their own branch of the tree structure (until the
branch is complete), hence our use of a tree representation
for general graphs with added crossing edges. At each time
step, an exploring robot keeps going down its current branch
until reaching the end of a branch. Actually, the end of a
branch is typically a vertex which connects to another visited

vertex. Because we do not allow an exploring robot to cross
to another branch before its own branch is complete, the
robot reaching the end of a branch will backtrack to its parent
vertex looking for another unvisited edge in the branch. This
is illustrated in Fig. 4. In Fig. 4-(a), robot R1 moves from
vertex V2 to vertex V5, and the crossing edge V2-V'5 is
identified. Because robot R1 has not finished exploring its
own branch, it backtracks to vertex V2 during the next time
step, as showed in Fig. 4-(c).

2) Path for Busy Robot: A busy robot is different than
an exploring robot in that it can traverse crossing edges as
long as they have been verified. The right most graph in the
hypothesis expansion tree does not contain false crossing
edges, and as a result the path generated based on this graph
must be reliable.

3) Rule for Wait Robot: When one exploring robot arrives
at a vertex which is similar to a vertex that has already been
visited, the robot will change into the wait state and send
a task to the task array in order to arrange a meeting with
another robot to verify a loop-closure. Only when another
robot claims the task and arrives at the task vertex, the wait
state of the first robot can be removed. However, there are
two different cases. If these two robots finally meet each
other at the vertex, a loop is detected and the waiting robot
has to backtrack to its own branch. If the second robot arrives
at the desired vertex but the robots cannot see each other, we
can conclude that the first robot just happens to be visiting
an ambiguous vertex which still belongs to its own sub-tree.
In this case, the first robot will just return to the exploring
state and keep exploring the unverified part of the map.

C. BFS Using the Verified Map

Prior topological SLAM algorithms generally do not keep
track of the verified part of the map because most of them
are non-deterministic. As a result, they are not able to use the
knowledge about the environment at hand to accelerate the
mapping process. However, because a deterministic mapping
approach is adopted here, we can identify the reliable part
of the graph and take full advantage of exploration. Specifi-
cally, breadth-first-search (BFS) is used in our algorithm to
generate the shortest paths for the robots navigating to their
task locations.

D. Algorithm Description

Our algorithm is outlined in Alg. 1. It will continue to
execute until every vertex v in the verified map is complete.
During the exploration, the motion (next moving edge) e,
for robot r is generated according to r’s current state. For a
wait robot, it will not move until the wasit state is removed.
An exploring robot always follows a branch leading to
an unvisited vertex. However, when this robot r arrives at
a vertex v’ which is similar to a visited vertex Vsimiiar,
its state s, will immediately change to wait and vsimilar
will be added into the T'askArray. Once the TaskArray
is updated, it will try to assign the tasks to other robots.
Then, all of the robots states are updated according to
task assignment. BFS is used to search for the first edge

Algorithm 1 Deterministic Mapping Algorithm

1: while Incomplete(G) do

2: for each each robot r do

3 if s,=wait then

4: continue;

5: else if s.=exploring then

6 e, = FindBranch(r)

7 v = execute(e,);

8 if Vsimitar = IsSimilar(v') then
9: TaskArray.push(Vsimiiar);
10: Sy < wait;

11: AssignTask(TaskArray);
12: UpdateStates();

13: end if

14: else if s,.=returning then

15: €T=BFS(U:eturning);

16: v = execute(e,);

17: UpdateStates();

18: else

19: e,=BFS (v},)
20: v = execute(e,);
21: UpdateStates();
22: end if

23: end for
24: end while

e, of the shortest path leading a returning robot to the
return position. After executing e,., if the return position
is reached, s, changes to exploring. While, for a busy robot,
e, returned from BFS will lead the robot to its closest task
location. As long as vy, is empty, s, will be updated to
returning state. Additionally, if v’ eliminates the ambiguity
rooted from a wasit robot, that robot’s wait state can also be
removed.

1

20198 41

(W)

a) R2() R3@)

Fig. 5. The robot Rl moves from V2 to V3. And two tasks V3, V4 are
generated and distributed to robot R2, R3 respectively. Letters in parentheses
denote states of the robots. W indicates waiting, B indicates busy and E
means exploring.

E. Task Generation Example

Task generation plays a central role in our algorithm. To
successfully map an environment or identify a loop, the
correct tasks need to be assigned to the appropriate robots.
Additionally, task assignments will determine the efficiency
of this mapping procedure. During the mapping process,
robots are playing different roles to cooperatively fulfill
different tasks. As introduced in Sec. III, robots dynamically
change their states according to their current tasks with
different priorities. A task is generated when one robot
arrives at a vertex via an edge which is suspected to be a

8 OR3(E)

Fig. 6. R1 moves from V2 to V4 and, again, two tasks, V3 and V4 are
generated. As a result of BFS, both tasks are claimed by robot R2. Letters
in parentheses denote states of the robots. W indicates waiting, B indicates
busy and E means exploring.

crossing edge. This robot has to call other robots coming to
all of the suspected vertices to clarify the ambiguity. These
suspected locations will be stored in a task array for future
allocation to robots.

To efficiently finish all tasks, our algorithm again uses
BFS to determine the closest available robot to each task in
the task array. Thus, different tasks can either be assigned
to different robots or to just one single robot depending on
their distances to the tasks. For example, robot R1 in Fig. 5
is now arriving at a suspected vertex which might close a
loop. Two tasks (V'3 and V'4) are generated and distributed
to R2, R3 respectively, as a result of BFS. Fig. 6 shows
another example in which all of the tasks are claimed by
just one robot. Robot R1 moves from V2 to V4 and two
suspected loops are formed. The generated tasks V'3 and V4
are both claimed by R2, keeping 23 in the exploring state.

IV. ALGORITHM EVALUATION

To demonstrate the effectiveness of our algorithm, we
have compared the algorithm’s performance with a mapping
result derived from a purely random exploration strategy. We
collected experiment data with a wheeled mobile robot on
the 6th floor of Wean Hall University at Carnegie Mellon
University in Pittsburgh, Pennsylvania, USA, as shown in
Fig. 1. We post-processed our deterministic mapping algo-
rithm using the collected data in such a way that it simulated
5 robots.

When we ran our deterministic mapping algorithm on this
topology, the maximum number of generated hypotheses at
any point in time during the experiment was 2, while the
result from a random motion exploration strategy produced a
maximum of 11 hypotheses (and we note that the random ex-
ploration was not deterministic). For this map, our algorithm
required only 28 time steps to completely map the graph.
However, the random motion strategy varied between trials
and averaged more than 100 time steps to completely map
the graph. The random exploration strategy spawns many
more hypotheses because it does not manage the robots to
actively eliminate hypotheses, and the number of hypotheses
grows exponentially, as is the property of tree expansion.

We also tested our algorithm in a more complex virtual
environment which contains 45 vertices. For this map, our
probability-based single-robot algorithm [8] required more
than 1000 edge traversals to find the true hypothesis. Ad-
ditionally, 10 thousand hypotheses were spawned during

Fig. 7. To further validate our algorithm, we ran our algorithm in a
much more complex imagined map. This figure shows the final result of the
simulation. The graph is decomposed into a tree and several crossing edges.
All of the green edges belong to the tree structure and the red dashed lines
are crossing edges.

Fig. 8. The result of the the experiment can be displayed as a tree with
crossing edges.

the simulation. As a comparison, for the same map, the
maximum number of hypotheses that were required at any
given point in time by our deterministic algorithm was only
10 and it required only 352 edge traversals to complete
the mapping process. In addition to more efficient mapping,
this deterministic algorithm guarantees that the correct map
is found, which is not true for a probabilistic approach.
Fig. 7 shows the final result for this experiment. The tree
representation for this result can be seen in Fig. 8.

Because the same graph can be represented as different
trees with additional crossing edges, the tree structure be-
longing to the decomposed graph directly affects the required
number of hypotheses and edge traversals. Also, the tree’s
structure is affected by the order of edges added into the tree.

Fig. 9. By varying the ordering of edge choice, a different tree will merge
from the deterministic algorithm.

Specifically, when an exploring robot is at the boundary of
a verified portion of the map, there are different edges that
it can choose to explore the map. This choice will result
in different trees. We ran the afforementioned experiment
in the same environment with a different edge ordering.
This time, only 289 edge traversals were needed and the
maximum number of hypotheses was reduced to 6. Fig. 9
shows the tree representation for this result. The difference
in performance between these two experiments indicates a
potential improvement based on intelligent edge traversal
choices for the cooperating robots.

V. CONCLUSION

The algorithm we present in this paper is a novel multi-
agent deterministic mapping strategy. The application of this
algorithm is the collective mapping of an indoor environment
with multiple mobile robots. Our algorithm relies upon the
idea that two agents meeting at a rendezvous location is
a powerful source of information that can deterministically
confirm loop closure hypotheses.

From the experimental results, we can see that our ex-
ploration algorithm provides an efficient approach for multi-
robot deterministic graph mapping. The challenging problem
of loop closure is solved efficiently by an exploration strategy
in which robots request rendezvous tasks to verify loop
hypotheses. Also, by using a graph decomposition approach,
the graph coverage task can be dynamically divided and
assigned to each robot according to their states. Also, by
keeping the order of the expanded hypotheses in our ex-
panded hypothesis tree, we can always extract a reliable map
on which to plan paths for the robots. This ensures that a
robot that has been given a rendezvous task can find a path
to the meeting point.

For future work, some modifications can be made to
improve the performance of the presented algorithm. For

example, if one robot has traveled deeply along a single
branch in the tree representation of the topological graph
and is requested by another robot to return to the top of the
tree to verify loop closure, that robot has to travel a great
distance. However, if we carefully restrict the depth of robot
exploration, this situation can be avoided.

Also, as discussed at the end of the last section, the order
that the robots explore unvisited edges can also impact the
performance of the algorithm. This is because the resulting
tree structure will vary depending on the exploration, which
can highly affect the distance that the robots need to travel
upon receiving new rendezvous tasks.

REFERENCES

[1] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” Autonomous Robot Vehicles, Springer, 1990.

[2] M. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark, and
M. Csorba, “A solution to the simultaneous localisation and map
building (SLAM) problem,” IEEE Transactions of Robotics and Au-
tomation, vol. 17, no. 3, pp. 229-241, June 2001.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proceedings of the 2002 AAAI National Conf. Artificial
Intelligence, 2002.

[4] H. Choset and K. Nagatani, “Topological simultaneous localization

and mapping (slam): toward exact localization without explicit lo-

calization,” IEEE Transactions on Robotics and Automation, vol. 17,

no. 2, pp. 125-137, April 2001.

B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy

based on a semantic hierachy of spatial representations,” Robotics and

Autonomous Systems, vol. 8, pp. 46-63, 1991.

[6] B. Lisien, D. Morales, D. Silver, G. Kantor, I. Rekleitis, and H. Choset,
“The hierarchical atlas,” Robotics, IEEE Transactions on, vol. 21,
no. 3, pp. 473-481, June 2005.

[7]1 E. Remolina and B. Kuipers, “Towards a general theory of topological
maps,” Artificial Intelligence, vol. 152, no. 1, pp. 47-104, 2004.

[8] S. Tully, G. Kantor, H. Choset, and F. Werner, “A multi-hypothesis

topological slam approach for loop closing on edge-ordered graphs,”

in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Inter-

national Conference on, October 2009, pp. 4943-4948.

F. Savelli and B. Kuipers, “Loop-closing and planarity in topological

map-building,” Intelligent Robots and Systems, 2004. IROS 2004.

IEEE/RSJ International Conference on, pp. 1511-1517, 2004.

[10] G. Dudek, P. Freedman, and S. Hadjres, “Using local information
in a non-local way for mapping graph-like worlds,” Proc. the 3rd
International Conference on Artificial Intelligence, pp. 1639-1645,
1993.

[11] ——, “Using multiple models for environmental mapping,” Journal
of Robotic Systems, vol. 13, no. 8, pp. 539-559, 1996.

[12] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration
as graph construction,” Robotics and Automation, IEEE transactions
on, vol. 7, no. 6, pp. 859-865, 1991.

[13] G. Dudek, M. Jenkin, and D. Wilkes, “Map validation and robot self-
location in a graph-like world,” Robotics and Autonomous Systems,
vol. 22, no. 2, pp. 159-178, 1997.

[14] S. Das, P. Flocchini, A. Nayak, and N. Santoro, “Distributed explo-
ration of an unknown graph,” Structural Information and Communi-
cation Complexity, vol. 3449, 2005.

[15] N. Roy and G. Dudek, “Collaborative robot exploration and ren-
dezvous: Algorithms, performance bounds and observations,” Au-
tonomous Robots, vol. 11, pp. 117-136, 2001.

[16] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Topological explo-
ration with multiple robots,” 7th International Symposium on Robotics
with Application (ISORA), vol. 3, no. 3, 1998.

[17] H. Wang, M. Jenkin, and P. Dymond, “Enhancing exploration in graph-

like worlds,” in Computer and Robot Vision, 2008. CRV ’08. Canadian

Conference on, May 2008, pp. 53-60.

G. Vijayan and A. Wigderson, “Planarity of edge ordered graphs,”

Technical Report 307, Princeton University, vol. TR307, December

1982.

[5

—

[9

—

[18

