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Abstract— This paper discusses the importance of iteration
when performing the measurement update step for the problem
of bearing-only SLAM. We focus on an undelayed approach
that initializes a landmark after only one bearing measurement.
Traditionally, the extended Kalman filter (EKF) has been used
for SLAM, but the EKF measurement update rule can often
lead to a divergent state estimate due to its inconsistency in
linearization. We discuss the flaws of the EKF in this paper, and
show that even the well established inverse-depth parametriza-
tion for bearing-only SLAM can be affected. We then show
that representing the bearing-only update as a numerical
optimization problem (solved with an iterative approach such
as Gauss-Newton minimization) prevents divergence of the
Kalman filter state and produces accurate SLAM results for a
bearing-only sensor. More specifically, we propose the use of an
iterated Kalman filter to resolve the issues normally associated
with the EKF measurement update. Two outdoor mobile robot
experiments are discussed to compare algorithm performance.

I. I NTRODUCTION

Simultaneous localization and mapping (SLAM) is the
task of incrementally building a map of the surrounding
environment with a mobile robot while simultaneously local-
izing the robot in the map. With the availability of inexpen-
sive monocular vision, bearing-only SLAM has received in-
creased attention recently [1]–[8]. Many of these techniques
accumulate bearing measurements until a new landmark can
be accurately placed in the environment. Instead, we focus
on an undelayed approach that arbitrarily initializes observed
landmarks. With undelayed initialization, the Kalman filter
can immediately gain the localization benefit of having
measured a new landmark.

A common tool used for SLAM is the extended Kalman
filter (EKF). Unfortunately, the extended Kalman filter is ill-
suited for the problem of bearing-only SLAM because of a
highly nonlinear measurement model. In many situations, the
state estimate will diverge, resulting in an inaccurate SLAM
result.

We address this problem by observing that the EKF
measurement update is equivalent to performing a single
iteration of Gauss-Newton optimization on the cost function
that is defined for the Kalman update [9]. When performing
numerical optimization, it does not make sense to take just
one step in the Newton direction. The update equation should
be iterated until convergence.
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Fig. 1. An illustration of the measurement update task for bearing-only
SLAM.

We adopt the iterated Kalman filter (IKF) for bearing-
only SLAM. It can be shown that the IKF is equivalent to
using a Gauss-Newton method for optimizing the Kalman
update [9]. In some literature (for example in [10]), it
is claimed that the IKF update may enhance divergence.
However, we show that when implemented properly with a
variable-stepbacktrackingmethod as described in [11], the
IKF will in fact counteract divergence. Although the iterated
form of the Kalman filter is not new, we believe we are
the first to properly demonstrate its use with bearing-only
SLAM.

Recent work suggests encoding landmarks with a modified
polar coordinate representation that estimates inverse-depth
to landmarks [8], [12]. This representation results in a mea-
surement equation that has low linearization error. We show
that, even for this improved parameterization, the extended
Kalman filter can fail. Iterating the measurement update, as
we are trying to emphasize throughout this paper, improves
performance.

In this paper, we briefly review other methods in Sec. II
and then formalize in detail the filtering task of bearing-only
SLAM, including the definitions of two different landmark
parameterizations, in Sec. III. We then demonstrate the ill
effects of relying on the EKF in Sec. IV in order to motivate
our need for an iterated filter, which we develop fully in
Sec. V. Finally, we introduce experimental evidence that
demonstrates the benefit of iteration for bearing-only SLAM
in Sec. VI before concluding the paper with a discussion in
Sec. VII.



II. RELATED WORK

Delaying the initialization of landmarks is a popular
method in bearing-only SLAM. A batch update with all
of the stored observations is demonstrated in [13]. In [1],
initialization is postponed until a pair of measurements
are distinguishable enough and the probability density of
the corresponding landmark becomes sufficiently Gaussian.
In [2], the persistence of landmark pose estimation is tracked
without prior knowledge of data association. To incorpo-
rate the positioning and sensing uncertainties, the authors
project measurements from the sensor space to the plane by
approximating Gaussian distributions with bivariate ellipse
representations.

Another popular method, which is related to the extended
Kalman filter, is the Gaussian sum filter (GSF). The GSF
approximates arbitrary probability density functions by a
weighted combination of many multivariate Gaussians. Since
the GSF, which is introduced in [14], [15], requires retain-
ing a large set of EKFs, its computational complexity can
become problematic when a large number of landmarks are
initialized simultaneously (typical for vision-based methods).
An approximated Gaussian sum method is proposed in [4],
where a set of parametrized cascaded Gaussian distributions
and a single covariance matrix for all the Gaussians is man-
aged and updated by federated information sharing (FIS).
Although this method is an improvement over the standard
GSF, a larger state is still required to initialize landmarks.

Particle Filters (PFs), which incorporate non-Gaussian
distributions, are widely used in SLAM research. In [5],
particle filters are adopted for bearing measurements by
associating hypothesized pseudo-ranges with each bearing
measurement and by implementing a re-sampling procedure
to eliminate improbable particles. In [16], a set of particles
are maintained along the viewing ray of a landmark and
landmark initialization is delayed until the range distribution
is roughly Gaussian. In [7], a FastSLAM particle filter is
used for single-camera SLAM with a partial initialization
strategy which estimates the inverse-depth of new landmarks
rather than their depth. Unfortunately, particle filter methods
often require a very large number of particles for landmark
initialization.

Direct parametrization of inverse-depth is used for monoc-
ular SLAM in [12] and a method of inverse-depth and depth
conversion is proposed by the same authors in [8]. It is
well known that the inverse-depth representation can handle
distant landmarks more efficiently than conventional param-
eterizations because it incorporates a measurement equation
with low linearization error. This method effectively doubles
the size of the Kalman filter state in order to encode landmark
locations, which increases the computational complexity of
the problem.

III. T HE BEARING-ONLY SLAM PROBLEM

In this section, we will present two formalizations of the
undelayed bearing-only Kalman filter SLAM problem. The
first is more conventional and encodes the location of a

landmark by itsx and y coordinates. The second uses an
inverse-depth parameterization, as presented in [12].

A. Defining the Kalman Filter State

The conventional (x,y) definition of the filter state is

Xk = [xR yR θR xL1
yL1

xL2
yL2

... xLN
yLN

]T ,

which represents the robot pose appended by the locations of
N observed landmarks. The inverse-depth parameterization
proposed in [12] modifies the state as follows.

Xk = [xR yR θR x0
L1

y0
L1

ρL1
φL1

... x0
LN

y0
LN

ρLN
φLN

]T ,

wherex0
Li

andy0
Li

are thex andy coordinates of the robot
when theith landmark is initialized, andρLi

and φLi
are

the inverse-depth and bearing to theith landmark relative to
that initialization point. The distribution over possiblestates
is estimated recursively by its mean̂Xk and covariancePk.

B. Models for Bearing-Only SLAM

The motion input,uk = [vk ωk]T , contains the transla-
tional and rotational velocities of the robot at time-stepk.
The state evolves according to the process model

f(Xk, uk) = Xk +









vk cos (θR)∆t

vk sin (θR)∆t

ωk∆t

02N,1









where∆t is the time elapsed since the previous update and
U is the covariance of the inputuk.

The (x,y) measurement model for a relative bearing ob-
servation of theith landmark is

hi(Xk) = arctan

(

yLi − yR

xLi − xR

)

− θR.

The inverse-depth equivalent is

hi(Xk) = arctan

(

y0
Li

+ 1

ρLi

sin φLi
− yR

x0
Li

+ 1

ρLi

cos φLi
− xR

)

− θR.

We assume that all bearing measurements are perturbed by
additive white Gaussian noise with varianceσ2

z .

C. Prediction Step

For the Kalman filter prediction step, the state mean and
covariance matrix are computed as follows.

X̂−

k+1
= f(X̂+

k , uk)

P−

k+1
= FP+

k FT + WUWT

where X̂+

k and P+

k define the estimate from the previous
time step, andF andW are the Jacobians of the state process
equation.

F =
∂f(X̂+

k , uk)

∂Xk

, W =
∂f(X̂+

k , uk)

∂uk

.



D. Landmark Initialization

In order to satisfy true undelayed estimation, a landmark
must be initialized after observing only one relative bearing
measurement. We will refer to this first observation aszinit.
Without any information regarding the range of the landmark
along this initial measurement ray, we must guess or use
some heuristic for choosingrinit, the initialization range.

For the conventional (x,y) filter, the initialized landmark
location can be computed by mapping the relative bearing
measurementzinit and the chosen initialization rangerinit

through a nonlinear function

g(Xk, zinit, rinit) =

[

xR + rinit cos (θR + zinit)
yR + rinit sin (θR + zinit)

]

.

The analogous function for encoding a new landmark with
the inverse-depth parameterization is

g(Xk, zinit, rinit) =









xR

yR
1

rinit

θR + zinit









.

The state mean and covariance are augmented as follows
to include the new landmark in the Kalman filter state.

X̂−

k =

[

X̂−

k

g(X̂−

k , zinit, rinit)

]

P−

k =







P−

k P−

k
∂g
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−

k

T
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k
∂g

∂X−
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P−

k
∂g
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T
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∂v

T







wherev = [rinit zinit]
T for the conventional (x,y) filter and

v = [ 1

rinit

zinit]
T for the inverse-depth parameterization.V

is the covariance matrix for the initialization vectorv, which
is chosen by the user. For our experiments, we define the
initialization covariance

Vxy =

[

A 0
0 σ2

z

]

, VID =

[

1.0 0
0 σ2

z

]

for the (x,y) filter and the inverse depth filter respectively,
with A arbitrarily large.

E. Measurement Update

The measurement update is the central topic of this paper.
The purpose of the measurement update is to improve
our state estimate by incorporating bearing observations of
landmarks already present in the Kalman filter state. To
motivate the use of an iterated method, we will review the
overall objective of the Kalman update here (a task that is
illustrated in Fig. 1).

Ideally, we would like to replace the current state mean
with the maximum likelihood state estimate given the mea-
surementzk and the predicted state estimateX̂−

k , P−

k . This is
equivalent to maximizing the following posterior probability.

X̂+

k = arg max
X

prob(X | zk, X̂−

k , P−

k ) (1)

wherezk is a vector composed of all bearing observations
acquired at time-stepk.

(-1,0)

(-1,0)

(0,0)
(X0,0)

Fig. 2. An analytical example where a robot with perfect odometry
and a perfect bearing sensor acquires two measurements to a landmark
at the origin (filled star). The EKF update fails to localize the landmark
at the origin when the initialization is incorrect (open star), despite perfect
measurements.

When adopting the framework of the Kalman filter, the
solution to (1) is the minimization of the following nonlinear
least-squares cost function

c(X) =

[

zk − h(X)

X − X̂−

k

]T[
R 0
0 P−

k

]

−1[

zk − h(X)

X − X̂−

k

]

(2)

whereR is a matrix with diagonal elements equal toσ2
z , the

variance of a single bearing measurement.
Given a linear measurement model, the standard Kalman

filter measurement update equation would provide a closed-
form optimal solution to the minimization of (2). This is not
the case with bearing-only SLAM.

The extended Kalman filter measurement update approxi-
mates the solution of (2) via linearization of the measurement
function about the current estimate. In the next section we
will show that this option will not work well with bearing-
only measurements.

IV. FAILURES OF THEEKF

The widely used extended Kalman filter measurement
update can be written in the following way.

H =
∂h(X̂−

k )

∂Xk

X̂+

k = X̂−

k + P−

k HT (HP−

k HT + R)−1(zk − h(X̂−

k ))

P+

k = P−

k − P−

k HT (HP−

k HT + R)−1HP−

k (3)

whereX−

k is the previous state mean,P−

k is the previous
covariance matrix, andH is the Jacobian of the measurement
function linearized about the current estimate. It is due to
this linearization that problems arise when using the EKF
measurement update.

We will now work through an analytical exercise that
demonstrates the undesirable effects of the EKF. Let us
assume we have a mobile robot, with perfect odometry,
driving along a path defined by a circle of radius one centered
at the origin, as shown in Fig. 2. Also, the robot can measure
a landmark at the origin with a perfect bearing sensor. In



Fig. 2, we show the robot observing the landmark once
at a position of (−1,0) and again at a position of (0,1).
Two such measurements, from two distinctive and known
positions, should be enough to localize the exact location
of the landmark regardless of the parameterization used
to encode landmarks. We believe that a decent nonlinear
estimator should, at the very least, solve this simplified
example by finding the maximum likelihood estimate.
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Fig. 3. The resulting landmark location versus its initialized location for
an example in which two perfect bearing measurements are obtained from
distinctive locations. Top: the (x,y) filter result. Bottom: the inverse-depth
result.

When deriving the (x,y) EKF update result for the analyt-
ical example illustrated in Fig. 2, we end up with

x1 = x0 − (x2
0 + 1) arctan(x0) (4)

wherex0 is the initialized location of the landmark on the
x-axis (equal torinit − 1), andx1 is the resulting estimate
of the landmark location on thex-axis after two perfect
bearing measurements. Notice that ifx0 6= 0, x1 will not
equal the correct value. We note that they coordinate of
the landmark is correctly localized for this example. Fig. 3
shows the resultingx-axis location of the landmark estimate
versus different initialization points.

The previous result shows that, unless you can somehow
exactly guess the depth of the landmark after just one bearing
measurement, the estimate will be wrong. It is also worth
noting that, when the landmark is initialized at a large depth,
the EKF update will tend to over-correct and place the
estimate to the left of the original robot position. This is an
undesirable result because the new location will no longer
agree with the first measurement. Often this problem may
lead to divergence after additional measurements.

Although it is true that using inverse-depth parametrization
makes the bearing only SLAM problem more linear for
low parallax situations, it is not necessarily an improvement
for high parallax measurements. The nonlinearity issues
pertaining to the EKF measurement update still remain. After

carrying out the EKF update with inverse-depth parame-
terization and then mapping the result back to an (x,y)
coordinate, the following update rule is obtained for the
previous analytical exercise.

x1 =
(x0 + 1)2

x0 + 1 + (x2
0 + 1) arctan(x0)

− 1.

In this case, the updated landmark estimate for various
initialization positions is shown in Fig. 3.

It is clear that, under certain unlucky choices ofx0,
the updated landmark estimate would diverge to a negative
value very far away from the robot and to the left of its
original position. This demonstrates the possibility of a very
large error despite two perfect measurements. This situation
involves replacing the current inverse-depth estimate with a
negative value. Under the assumptions of this parameteriza-
tion technique, we should not have a negative depth, and in
fact such an occurrence causes divergence in experiments.

V. A N ITERATED FILTER FOR BEARING-ONLY SLAM

As discussed in Sec. III, the objective of the Kalman
measurement update is to find the maximum likelihood state
estimate by minimizing the cost function given by (2). We
have previously discussed that the extended Kalman filter
approximates this minimization through linearization about
the current estimate, but in many cases does not solve the
true minimum of (2). We propose the use of numerical
optimization to minimize the objective cost function because
of the nonlinearity of bearing-only measurement models.

The Gauss-Newton algorithm iteratively solves the non-
linear least-squares minimization problem with the following
recursive equation.

Xi+1 = Xi − γi(∇
2c(Xi))

−1∇c(Xi) (5)

whereγi is a parameter to vary the length of the step-size.
By substituting the appropriate Jacobian∇c(Xi) into (5)

along with the Hessian∇2c(Xi), we arrive at the following
update rule for the iterated Kalman filter, whereH is the
Jacobian of the measurement functionh(X) linearized about
Xi. We refer the reader to [9] for details of this derivation.

x0 = x̂−

k+1
, P0 = P−

k+1

Ki = P0H
T
i (HiP0H

T
i + R)−1

xi+1 = xi + γi(H
T
i R−1Hi + P−1

0 )−1

·(HT
i R−1(z − h(xi)) + P−1

0 (x0 − xi)) (6)

= x0 + Ki(zk+1 − h(xi) − Hi(x0 − xi)) (7)

In the equations above, the subscriptk refers to the time-
index and the subscripti refers to the iteration index. For
a single update step at timek there may require many
iterations ofi before the statexi converges. Once the IKF
does converge, the estimate is overwritten with the result,
X̂+

k+1
= Xi. In order to obtain the conventional IKF update

equation, as in 7, the variable-step parameterγi in (6) must
equal one.

We believe it is important to recognize that the EKF
update rule is equivalent to performing just one iteration of



Fig. 4. A vision-based experimental result of bearing-only SLAM
overlapped with a satellite image. This map was created using the (x,y)
IKF method. A cyan (light colored) solid line depicts the robot trajectory,
uncertainty ellipses are shown for the map estimate, and× marks depict
the true landmark positions.

the Gauss-Newton algorithm: taking (7) and settingi = 0
produces the well known EKF update equations below.

K0 = P0H
T
0 (H0P0H

T
0 + R)−1

x̂+

k+1
= x1 = x0 + K0(zk+1 − h(x0))

Typical formulations of the IKF update equation, for
example in [17], always chooseγi equal to one and therefore
force a full Newton step when optimizing. For the problem
of bearing-only SLAM, taking a full Newton step is risky
because it may increase the cost and lead to divergence of
the state estimate.

We incorporatebacktrackingand revert to (6). By varying
γi to satisfy an acceptance criteria [11], we instead take a
partial step in the Newton direction and can guarantee that
the new estimate computed during iterationi reduces the
cost.

In our experiments, the optimization requires between two
and five iterations to converge, and is therefore only slightly
more computationally intensive than the conventional EKF.
On the other hand, we must revaluateγi several times within
one iteration step of (6) to ensure that the cost is reduced,
but this is not processor intensive because the correction term
of (6) can be precomputed and simply scaled. Although we
iterate to improve our estimate for the state mean, we use
the same covariance update method that is used with the
conventional EKF measurement update (3).

VI. EXPERIMENTAL RESULTS

We have applied our iterated filter to both parameterization
methods described in Sec. III and to two different data sets.
One is an outdoor vision-based experiment and another is
based on the standard Victoria Park benchmark dataset [18].
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Fig. 6. This plot shows the accuracy of the completed map for a
visual SLAM experiment while varying the measurement frequency. This
plot compares the conventionalx,y EKF (labeled EKF), thex,y IKF
(labeled IKF), the inverse-depth EKF (labeled ID), and the inverse-depth
IKF (labeled IID).

For each of the experiments, we assume data association has
been solved.

The first experiment is an offline vision-based SLAM
experiment (see Fig. 4) with a robot that captures images
at 15 Hz with four cameras that have non-overlapping fields
of view. Although this experiment does not involve a large
number of landmarks, it offers other challenges for bearing-
only SLAM such as low parallax observations and high
parallax observations. One of the landmarks in the map is a
distance of 100m from the robot when it is initialized.

In Fig. 5, we show the accuracy of the experiment while
varying the initialization range for four different estimation
methods: the conventional (x,y) EKF, the (x,y) IKF, the
inverse-depth EKF, and the inverse-depth IKF. The conven-
tional (x,y) EKF result is only partially represented in this
plot because choosing a large initialization range causes this
method to diverge. On the other hand, the (x,y) IKF result
prevents divergence for any initialization depth and produces
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Fig. 7. The EKF inverse-depth method must ignore a measurement update
that results in a negative range, effectively “blinding” the robot for a period
of time. This shows divergence of the robot pose.

a very accurate map that outperforms the inverse-depth
methods in many cases. Additionally, this figure exemplifies
the benefit of the inverse-depth parameterization for land-
mark initialization: the accuracy of the map is completely
independent of the chosen initialization depth. Because, at
a 15 Hz measurement rate, all observations for our data is
effectively low parallax, neither inverse-depth algorithm was
effected by the nonlinearity issues discussed in Sec. IV.

Fig. 6 shows the accuracy of the map while varying
the effective measurement update rate. The reason we are
looking at this relationship is because decreasing the mea-
surement rate introduces high parallax observations. High
parallax situations can occur when landmarks are very close,
when the robot is travelling very fast, when the measurement
rate is slowed by image processing, and/or when occlusion
causes measurements to originate from very different vantage
points. Fig. 6 shows that both the conventional (x,y) EKF and
the inverse-depth EKF bearing-only SLAM algorithms are
effected when the measurement rate is decreased, therefore
implying that these algorithms are susceptible to high paral-
lax situations. Both iterated methods work well throughout
this test and have comparable accuracy. A typical result for
a map created with the (x,y) IKF is shown in Fig. 4 and
shows proper convergence of landmark locations despite the
nonlinearity of the measurement model.

The next experiment is extracted from the popular Victoria
Park SLAM dataset [18], which offers logged range/bearing
measurements from a laser range sensor. To conform to the
bearing-only theme of this paper, we appropriately discardall
range measurements offered within this dataset. Although the
landmarks are nearby and therefore do not offer a challenging
low parallax test for the presented algorithms, there are
numerous landmarks. We have found that the failures of the
EKF emerge more quickly for a larger dataset.

In Sec. IV we discuss the possibility that the inverse-
depth EKF update can result in a negative inverse-depth
value. This can be very problematic and, in fact, a strict
implementation of the inverse-depth EKF will quickly result
in a diverging state estimate during the first several seconds

Fig. 8. An experimental result of bearing only SLAM using the Victoria
Park dataset. A solid line depicts the robot trajectory and yellow dots depict
landmarks.

of the Victoria Park dataset due to this reason. An easy
solution is to effectively ignore a measurement update if
it results in a negative inverse-depth value (because the
clearly erroneous update would cause more harm than simply
reinstating the previous estimate). Unfortunately, as seen in
Fig. 7, this implementation hack cannot save the inverse-
depth EKF method. Throughout the path drawn in red (darker
solid line), the robot is effectively blind because it continues
to ignore a sequence of 46 consecutive measurement updates
that attempt to encode a landmark with a negative inverse-
depth. Finally the estimate is eventually corrected towards the
proper estimate, drawn in green (lighter solid line). Ignoring
measurement updates is not a good solution to this problem:
in fact, over 33 percent of measurements are discarded
throughout the portion of the Victoria Park experiment we
used to compare our algorithms. An iterated method, on the
other hand, is able to apply every measurement correctly and
produces a very accurate map.

The conventional (x,y) EKF is understandably a disaster
when applied to the Victoria Park dataset. The state estimate
diverges quickly, moving the robot a significant distance
away from the proper pose location and converging landmark
estimates in completely wrong places. The (x,y) IKF, on the
other hand, which we formalized in Sec. V, has no problems
estimating a large number of landmarks in this large-scale
experiment, as seen in Fig. 8.

VII. C ONCLUSION

Throughout this paper, we have ignored the problem of
data association. Although data association is in itself a
major topic in the robotics community, we chose to focus
more on the estimation aspects of this problem with the
assumption that data association can be solved through
other methods (such as feature matching based on visual
information). We also demonstrated our algorithms through
offline experiments. This was to aid in the task of parameter
tuning, and we believe that all algorithms in this paper would



easily run online (with a limit on the number of landmarks
in the state).

For the most part, SLAM researchers have opted to
use multi-hypothesis filters, delayed initialization, or adif-
ferent parameterization of the state to solve the problem
of undelayed bearing-only SLAM. The reason is that the
measurement model for bearing-only observations is highly
nonlinear, which causes the conventional extended Kalman
filter measurement update to diverge for large linearization
errors.

One contribution we have made is to show that the
traditional Kalman filter framework used in numerous other
SLAM papers (where landmarks are encoded by theirx,y lo-
cation) can be adopted for undelayed bearing-only SLAM if
properly implemented with an iterated measurement update.
Although the iterated Kalman filter is not new, we believe we
are the first to apply it to the problem of bearing-only SLAM.
The (x,y) IKF method works well for outdoor experiments
that include far away landmarks and low parallax situations.

One advantage of using an inverse-depth parameterization
is its ability to handle extreme low parallax observations.
But in our paper, we point out several situations in which
the inverse-depth method can run into problems. In this case,
an iterated form of the Kalman filter is again the solution.

Our main contribution is to show that iterated methods are
beneficial for bearing-only SLAM. The parameterization to
use is, in our opinion, a choice of the user. If a larger state
size becomes problematic then the (x,y) IKF formalization
may be preferred. If robustness to extreme low parallax
situations is necessary then the iterated inverse depth filter
would be more appropriate. Even though the proper choice
may depend on the specific application, our main point still
remains: iteration is crucial for accurate bearing-only SLAM.

In this paper, we apply Gauss-Newton method for numer-
ical optimization. The purpose of iteration is to minimize
the objective cost function. Other methods of numerical
optimization would likely produce equivalent results, such as
the Broyden method or the Levenberg-Marquardt algorithm.
We are currently investigating these different optimization
methods. Additionally, although we have been unable to
prove that numerical optimization of the cost function in-
troduced in Sec. III will always converge upon theglobal
minimum, we believe it to be true (via extensive experimental
evidence). If this is indeed true, then the iterated form of
the Kalman filter (for this specific problem) would produce
the optimal state mean update at every time-step. This, in
no way, suggests that the algorithms presented here would
be optimal filters. The covariance update is still based on
linearization and is an approximation. In future work we will
try to prove the optimality of the update and are currently
investigating more appropriate covariance update methodsto
improve performance.
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