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Abstract— This paper discusses the importance of iteration
when performing the measurement update step for the problem
of bearing-only SLAM. We focus on an undelayed approach
that initializes a landmark after only one bearing measurement.
Traditionally, the extended Kalman filter (EKF) has been used
for SLAM, but the EKF measurement update rule can often
lead to a divergent state estimate due to its inconsistency in
linearization. We discuss the flaws of the EKF in this paper, and
show that even the well established inverse-depth parametriza-
tion for bearing-only SLAM can be affected. We then show
that representing the bearing-only update as a numerical
optimization problem (solved with an iterative approach such
as Gauss-Newton minimization) prevents divergence of the
Kalman filter state and produces accurate SLAM results for a
bearing-only sensor. More specifically, we propose the use of an
iterated Kalman filter to resolve the issues normally associated
with the EKF measurement update. Two outdoor mobile robot  Fig. 1.  An illustration of the measurement update task for ihgawnly
experiments are discussed to compare algorithm performance. SLAM.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the ) ) )
task of incrementally building a map of the surrounding e adopt the iterated Kalman filter (IKF) for bearing-
environment with a mobile robot while simultaneously lecal ©Nly SLAM. It can be shown that the IKF is equivalent to
izing the robot in the map. With the availability of inexpen-Using & Gauss-Newton method for optimizing the Kalman
sive monocular vision, bearing-only SLAM has received in¥Pdate [9]. In some literature (for example in [10]), it
creased attention recently [1]-[8]. Many of these techegqu 'S claimed that the IKF updaFe may enhance dlverg_ence.
accumulate bearing measurements until a new landmark cilRWever, we show that when implemented properly with a
be accurately placed in the environment. Instead, we fociyériable-stepbackirackingmethod as described in [11], the
on an undelayed approach that arbitrarily initializes olese IKF will in fact countergct d_lvergence. Although the iterdt
landmarks. With undelayed initialization, the Kalman filte form of the Kalman filter is not new, we believe we are
can immediately gain the localization benefit of havindhe first to properly demonstrate its use with bearing-only
measured a new landmark. SLAM.

A common tool used for SLAM is the extended Kalman

flltir ((jEfKF)t.hUnforgfnateI%/,;he .extendledsfill\r; abn filter it 'lf olar coordinate representation that estimates inveepéhd
sulted for the problem of bearing-only €cause ot g, jandmarks [8], [12]. This representation results in a mea

highly nqnlmear meqsurement mc_)del_. In many situatiorss, trEurement equation that has low linearization error. We show
state estimate will diverge, resulting in an inaccurate BLA that, even for this improved parameterization, the extdnde

result. ' . .
, i Kalman filter can fail. Iterating the measurement update, as
We address this pr_oblem_ by observing tha}t the I_EK e are trying to emphasize throughout this paper, improves
measurement update is equivalent to performing a sing Hormance
iteration of Gauss-Newton optimization on the cost funttio '
that is defined for the Kalman update [9]. When performing In this paper, we briefly review other methods in Sec. I
numenca! optimization, it dO{ES not make sense to take juahd then formalize in detail the filtering task of bearindyon
one step in the Newton direction. The update equation shoul AM, including the definitions of two different landmark
be iterated until convergence. parameterizations, in Sec. lll. We then demonstrate the ill
- . o effects of relying on the EKF in Sec. IV in order to motivate
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versity, Pittsburgh, PA 15213, USAst ul | y@ce, kantor@i, Sec. V. Finally, we introduce experimental evidence that
choset @s}. cnu. edu _ o demonstrates the benefit of iteration for bearing-only SLAM
H. Moon is with the Mechanical Engineering Department at. bef ludi h ith a di . .
SungKyunKwan University, Suwon, Gyeonggi-do 440-746, d¢or in Sec. VI before concluding the paper with a discussion in
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Recent work suggests encoding landmarks with a modified



Il. RELATED WORK landmark by itsx and y coordinates. The second uses an

Delaying the initialization of landmarks is a popuIarmverse_deth parameterization, as presented in [12].

method in bearing-only SLAM. A batch update with all _ .

of the stored observations is demonstrated in [13]. In [1f' Defining the Kalman Filter State

initialization is postponed until a pair of measurements The conventionalx,y) definition of the filter state is
are distinguishable enough and the probability density of . T
the corresponding landmark becomes sufficiently Gaussian?# — [R YR OR T1y Y, TLo Yo - TLy YIn]

In [2], the persistence of landmark pose estimation is &eck \yhich represents the robot pose appended by the locations of
without prior knowledge of data association. To incorpoy gpserved landmarks. The inverse-depth parameterization

ratg the positioning and sensing uncertainties, the aﬂthoﬁroposed in [12] modifies the state as follows.

project measurements from the sensor space to the plane by

approximating Gaussian distributions with bivariatepsé X, =[x yr Or ) Yy oy by 2 YY) pry dr)T
representations. o o _

Another popular method, which is related to the extende@herez;, andy;, are thez andy coordinates of the robot
Kalman filter, is the Gaussian sum filter (GSF). The Gsivhen theith landmark is initialized, angb,, and ¢, are
approximates arbitrary probability density functions by 4Ne inverse-depth and bearing to thie landmark relative to
weighted combination of many multivariate Gaussians. sindhat initialization point. The distribution over possildtates

the GSF, which is introduced in [14], [15], requires retainiS estimated recursively by its meay, and covariance’.
ing a large set of EKFs, its computational complexity can ,

become problematic when a large number of landmarks afe Models for Bearing-Only SLAM

initialized simultaneously (typical for vision-based imeds). The motion input,u, = [v, w]?, contains the transla-
An approximated Gaussian sum method is proposed in [4Jonal and rotational velocities of the robot at time-step
where a set of parametrized cascaded Gaussian distributiorne state evolves according to the process model

and a single covariance matrix for all the Gaussians is man-

aged and updated by federated information sharing (FIS). Uk, €OS (Or)AL

Although this method is an improvement over the standard F(Xp,u) = X5, + vg sin (Or) At

GSF, a larger state is still required to initialize landngark wi At
Particle Filters (PFs), which incorporate non-Gaussian O2nv,1

distributions, are widely used in SLAM research. In [S]yyhere At is the time elapsed since the previous update and
particle filters are adopted for bearing measurements by s the covariance of the inputj.

associating hypothesized pseudo-ranges with each bearingrpe (c,y) measurement model for a relative bearing ob-

measurement and by implementing a re-sampling procedwgyation of theth landmark is

to eliminate improbable particles. In [16], a set of pagcl

are maintained along the viewing ray of a landmark and hi(Xy) = arctan (yLi - yR> —0n.

landmark initialization is delayed until the range distition TL; — IR

is roughly Gaussian. In [7], a FastSLAM particle filter is|pqo inverse-depth equivalent is

used for single-camera SLAM with a partial initialization

strategy which estimates the inverse-depth of new landsnark

rather than their depth. Unfortunately, particle filter hoats hi(Xy) = arctan (

often require a very large number of particles for landmark

initialization. We assume that all bearing measurements are perturbed by
Direct parametrization of inverse-depth is used for monogdditive white Gaussian noise with varianeg

ular SLAM in [12] and a method of inverse-depth and depth

conversion is proposed by the same authors in [8]. It i§. Prediction Step

well known that the inverse-depth representation can leandl For the Kalman filter prediction step, the state mean and

distant landmarks more efficiently than conventional param '

. o covariance matrix are computed as follows.
eterizations because it incorporates a measurement equati

Yl + S-sinor, — yR)
—0n.

0 1 p
7.+ 7 CcoSPr, — TR

with low linearization error. This method effectively ddab X, = f(&Xh )
. . . k+1 ko Uk
the size of the Kalman filter state in order to encode landmark P — FptET 4 wUwT
locations, which increases the computational complexity o k+1 ™ k *
the problem. where X, and P, define the estimate from the previous
1. THE BEARING-ONLY SLAM PROBLEM time s_tep, and” andl¥ are the Jacobians of the state process
equation.

In this section, we will present two formalizations of the - -

undelayed bearing-only Kalman filter SLAM problem. The F = Of(Xy , ur) W= Of(Xy v“k).

first is more conventional and encodes the location of a 0X}, Ouy,



D. Landmark Initialization o)
In order to satisfy true undelayed estimation, a landmark

must be initialized after observing only one relative beguri

measurement. We will refer to this first observation:gs;.

Without any information regarding the range of the landmark

along this initial measurement ray, we must guess or use

some heuristic for choosing,;, the initialization range.

For the conventionala(y) filter, the initialized landmark
location can be computed by mapping the relative bearing CC) e
measurement;,,;; and the chosen initialization range,;; oo / K
through a nonlinear function ©0) (0

Q(kazinitarinit) Fig. 2. An analytical example where a robot with perfect odoynet

and a perfect bearing sensor acquires two measurements tad@addn
The analogous function for encoding a new landmark witht the origin (filled star). The EKF update fails to localizes tlandmark
the inverse-depth parameterization is at the origin when the initialization is incorrect (openrktaespite perfect

TR + Tinit €08 (O + Zinit)
YR + Tinit Sin (O + Zinit)

measurements.
TR
YR
X y Zimity Tinig = . .
9(Xes Zinit, Tinit) P When adopting the framework of the Kalman filter, the
OR + Zinit solution to (1) is the minimization of the following nonliae

The state mean and covariance are augmented as follolg@St-Squares cost function

to include the new Iafldmark in the Kalman filter state. . 2 — h(X) TR 01 an— h(X) ,
o= e ] =[5 al W] @
9(Xi Zamity Tinit) . whereR is a matrix with diagonal elements equald®, the
P P 6‘;’5’2 variance of a single bearing measurement.
P = Given a linear measurement model, the standard Kalman
99_p- ‘ LQP—LQT + @V@T filter measurement update equation would provide a closed-
ax, "k ax, "~k ax, v " Ov

form optimal solution to the minimization of (2). This is not
wherev = [rinir zinit]? for the conventional«,y) filter and  the case with bearing-only SLAM.

v = [T—t zinit)T for the inverse-depth parameterizatidn. The extended Kalman filter measurement update approxi-
is the covariance matrix for the initialization vectgrwhich  mates the solution of (2) via linearization of the measumme
is chosen by the user. For our experiments, we define tlienction about the current estimate. In the next section we

initialization covariance will show that this option will not work well with bearing-
A 0 1.0 0 only measurements.
ny:{ocr?]"/“’:{o 02]
z z IV. FAILURES OF THEEKF

fo_r the (x,y) fll'Fer and the inverse depth filter respectively, the widely used extended Kalman filter measurement
with A arbitrarily large. update can be written in the following way.
E. Measurement Update 8h(f(,€‘)

The measurement update is the central topic of this paper.H - X,
The purpose of the measurement update is to |mprov;e(]:r _ Xk_+P,;HT(HP,:HT+R)‘1(zk—h(f(k‘))

our state estimate by incorporating bearing observatidns o ¥ A Yo L
landmarks already present in the Kalman filter state. Tolx = Py —P H (HP H™ +R)"HP, @)

motivate the use of an iterated method, we will review th%vhere X is the previous state meai, is the previous
overall objective of the Kalman update here (a task that igyyariance matrix, an#f is the Jacobian of the measurement

illustrated in Fig. 1). function linearized about the current estimate. It is due to
Ideally, we would like to replace the current state meagyjs jinearization that problems arise when using the EKF
with the maximum likelihood state estimate given the meayeasurement update.
surement;, and the predicted state estimag , P, Thisis  \yg will now work through an analytical exercise that
equivalent to maximizing the following posterior probatyil  yemonstrates the undesirable effects of the EKF. Let us
(1) @assume we have a mobile robot, with perfect odometry,
driving along a path defined by a circle of radius one centered
where z;, is a vector composed of all bearing observationsat the origin, as shown in Fig. 2. Also, the robot can measure
acquired at time-step. a landmark at the origin with a perfect bearing sensor. In

X]:r = argmax prob(X | Zk7X];7P];)



Fig. 2, we show the robot observing the landmark oncearrying out the EKF update with inverse-depth parame-
at a position of £1,0) and again at a position of0(l). terization and then mapping the result back to any)(
Two such measurements, from two distinctive and knownoordinate, the following update rule is obtained for the
positions, should be enough to localize the exact locatigorevious analytical exercise.

of the landmark regardless of the parameterization used

- 2
to encode landmarks. We believe that a decent nonlinear T = (”L20 +1) —
estimator should, at the very least, solve this simplified w0 + 1+ (25 + 1) arctan(zo)
example by finding the maximum likelihood estimate. In this case, the updated landmark estimate for various
initialization positions is shown in Fig. 3.
30 ‘ ‘ : : : : It is clear that, under certain unlucky choices ©f,
20 1 the updated landmark estimate would diverge to a negative

value very far away from the robot and to the left of its

original position. This demonstrates the possibility ofeayw

large error despite two perfect measurements. This Situati

involves replacing the current inverse-depth estimaté wit

‘ ‘ ‘ negative value. Under the assumptions of this parameteriza
« tion technique, we should not have a negative depth, and in

fact such an occurrence causes divergence in experiments.

X" -101

2r 1 V. AN ITERATED FILTER FORBEARING-ONLY SLAM

As discussed in Sec. lll, the objective of the Kalman
measurement update is to find the maximum likelihood state
- | estimate by minimizing the cost function given by (2). We

W ] have previously discussed that the extended Kalman filter
S s 0 o5 1 15 2 25 3 approximates this minimization through linearization atbo
° the current estimate, but in many cases does not solve the
Fig. 3. The resulting landmark location versus its initietizZlocation for trug r_mm,mum Of_ (2) We pro_posg the use OT numerical
an example in which two perfect bearing measurements are etitiom  Optimization to minimize the objective cost function besau
distinctive locations. Top: thex(y) filter result. Bottom: the inverse-depth of the nonlinearity of bearing-only measurement models.
result The Gauss-Newton algorithm iteratively solves the non-

linear least-squares minimization problem with the foilogy

When deriving the£,yy) EKF update result for the analyt- recursive equation.
ical example illustrated in Fig. 2, we end up with

Xip1 = X; —%(Ve(X3) "' Ve(X;) )

2
w1 = xo — (zp + 1) arctan(wo) “) where~; is a parameter to vary the length of the step-size.

where z, is the initialized location of the landmark on the By substituting the appropriate Jacobi®(X;) into (5)
z-axis (equal tor,,;; — 1), andx; is the resulting estimate along with the Hessiaiv?c(X;), we arrive at the following
of the landmark location on the-axis after two perfect update rule for the iterated Kalman filter, whefe is the
bearing measurements. Notice thatrif # 0, z; will not Jacobian of the measurement functigiX) linearized about
equal the correct value. We note that thecoordinate of X;. We refer the reader to [9] for details of this derivation.

the landmark is correctly localized for this example. Fig. 3 . _
y P 9 ro = Ty, Po=P

shows the resulting-axis location of the landmark estimate . ’“; oo .
versus different initialization points. Ki = PRH; (HiRH; + R)
The previous result shows that, unless you can somehow z;11 = x;+v(HI R™'H; + Po_l)’1
exactly guess the depth of the landmark after just one bgarin (HFR™ (2 — h(z:)) + Py (zo — ;) (6)

measurement, the estimate will be wrong. It is also worth _
noting that, when the landmark is initialized at a large Hept = ot Ki(zker — hiwi) = Hilwo — @) (7)
the EKF update will tend to over-correct and place thén the equations above, the subscriptefers to the time-
estimate to the left of the original robot position. This is a index and the subscript refers to the iteration index. For
undesirable result because the new location will no longexr single update step at time there may require many
agree with the first measurement. Often this problem mayerations ofi before the state;; converges. Once the IKF
lead to divergence after additional measurements. does converge, the estimate is overwritten with the result,
Although it is true that using inverse-depth parametrizati )A(,j+1 = X;. In order to obtain the conventional IKF update
makes the bearing only SLAM problem more linear forequation, as in 7, the variable-step parametein (6) must
low parallax situations, it is not necessarily an improvatne equal one.
for high parallax measurements. The nonlinearity issues We believe it is important to recognize that the EKF
pertaining to the EKF measurement update still remain.rAftaipdate rule is equivalent to performing just one iteratién o
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Fig. 5. This plot shows the accuracy of the completed map forsaa¥i
SLAM experiment while varying the value of;,,;;. This plot compares
the conventionalr,y EKF (labeled EKF), ther,y IKF (labeled IKF), the
inverse-depth EKF (labeled ID), and the inverse-depth IKBdled 11D).

Fig. 4. A vision-based experimental result of bearing-onlyABI
overlapped with a satellite image. This map was created u$iagaty)
IKF method. A cyan (light colored) solid line depicts the rol@jectory,

12000

uncertainty ellipses are shown for the map estimate, :aneharks depict
the true landmark positions. (\’\4 ’——/\/
10000 EKF H
----- IKF
ID
8000~ | — = = D
the Gauss-Newton algorithm: taking (7) and setting 0 ol ool
produces the well known EKF update equations below. < A JJ
’_’f\/
T T 1 4000
Ky = PHT(HyRHT + R) /\f\/~
i:g-i-l = I =X+ Ko(zk_H — h(xo)) 2000 : LJ
Typical formulations of the IKF update equation, for O e e e Sl e 2
example in [17], always choosg equal to one and therefore Frames Batwaen Updatos

force a full Newton step when optimizing. For the problem _
of bearing-only SLAM, taking a full Newton step is risky Fig. 6.  This plot shows the accuracy of the completed map for a
- . ) visyal SLAM experiment while varying the measurement freqyefiis
because it may increase the cost and lead to divergencepR¥ compares the conventionaly EKF (labeled EKF), thez,y IKF
the state estimate. (labeled IKF), the inverse-depth EKF (labeled ID), and theerse-depth
We incorporatebacktrackingand revert to (6). By varying '<F (abeled IID).
~; to satisfy an acceptance criteria [11], we instead take a

partial step in the Newton direction and can guarantee that

the new estimate computed during iteratibmeduces the For each of the experiments, we assume data association has
cost. been solved.

In our experiments, the optimization requires between two The first experiment is an offline vision-based SLAM
and five iterations to converge, and is therefore only sljght experiment (see Fig. 4) with a robot that captures images
more computationally intensive than the conventional EKFat 15 Hz with four cameras that have non-overlapping fields
On the other hand, we must revaluateseveral times within - of view. Although this experiment does not involve a large
one iteration step of (6) to ensure that the cost is reducefymber of landmarks, it offers other challenges for bearing
but this is not processor intensive because the corre@iomt only SLAM such as low parallax observations and high
of (6) can be precomputed and simply scaled. Although Wgarallax observations. One of the landmarks in the map is a
iterate to improve our estimate for the state mean, we Ugfistance of 100m from the robot when it is initialized.
the same covariance update method that is used with the, Fig. 5, we show the accuracy of the experiment while

conventional EKF measurement update (3). varying the initialization range for four different estitien

methods: the conventionak,) EKF, the (,y) IKF, the
inverse-depth EKF, and the inverse-depth IKF. The conven-
We have applied our iterated filter to both parameterizatiotional (z,yy) EKF result is only partially represented in this
methods described in Sec. 11l and to two different data setplot because choosing a large initialization range causss t
One is an outdoor vision-based experiment and another risethod to diverge. On the other hand, they] IKF result
based on the standard Victoria Park benchmark dataset [1Bfevents divergence for any initialization depth and poesdu

VI. EXPERIMENTAL RESULTS
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Fig. 7. The EKF inverse-depth method must ignore a measuremdataip
that results in a negative range, effectively “blindinge tfobot for a period

of time. This shows divergence of the robot pose. Fig. 8. An experimental result of bearing only SLAM using thietgria

Park dataset. A solid line depicts the robot trajectory agltbyw dots depict
landmarks.

a very accurate map that outperforms the inverse-depth

methods in many cases. Additionally, this figure exemplifies , )

the benefit of the inverse-depth parameterization for lan@f the Victoria Park dataset due to this reason. An easy
mark initialization: the accuracy of the map is completel)?OIUtlon is to effectively ignore a measurement update if

independent of the chosen initialization depth. Because, & "€Sults in a negative inverse-depth value (because the
a 15 Hz measurement rate, all observations for our data f&&a1y €moneous update would cause more harm than simply

effectively low parallax, neither inverse-depth algamitivas re_\instating the previous (_estimate). Unfortunately, as see
effected by the nonlinearity issues discussed in Sec. Iv. F19- 7. this implementation hack cannot save the inverse-

Fig. 6 shows the accuracy of the map while varyin ePth_EKF method. Throughput the_path drawn ir_1 red ((_jarker
the effective measurement update rate. The reason we Pé'd line), the robot is effectively bIm_d because it comks
looking at this relationship is because decreasing the me _I(:[:]n(:tre a i:etquencedof 46| co(;\seclt(Jtlv_eihmeasurePen_t updates
surement rate introduces high parallax observations. Hi atk? ;‘_mp“ ?henc?_ N ? an matr \I/;" a netgz |tve ;Lerse-
parallax situations can occur when landmarks are very clos epth. mtq yt edes Imate 1S evenl_ue:]ty corrlgdclg O\f’.

when the robot is travelling very fast, when the measuremeRfOPET Estimale, drawn in green (lighter SOl |ne).. angr .
rate is slowed by image processing, and/or when OCCIusi6}1easurement updates is not a good solution to this problem.
causes measurements to originate from very dif'ferentgantaIn fact, over 33 pgrcent of m_easgrements are discarded
points. Fig. 6 shows that both the conventional EKF and throughout the portion of t_he V|ctor|<’_;1 Park experiment we
the inverse-depth EKF bearing-only SLAM algorithms aréjsed to compare our algorithms. An iterated method, on the
effected when the measurement rate is decreased, therefgrec’ hand, is able to apply every measurement correctly and

. : . : : roduces a very accurate map.
implying that these algorithms are susceptible to hlghlparap ; : .
lax situations. Both iterated methods work well throughout The conventionaly) EKF is understandably a disaster

this test and have comparable accuracy. A typical result fefY,hen app“efj to the Vigtoria Park dataset.. Th? state gsiimat
a map created with ther(y) IKF is shown in Fig. 4 and diverges quickly, moving the robot a significant distance

shows proper convergence of landmark locations despite tA&/@Y from the proper pose location and converging landmark
nonlinearity of the measurement model. estimates in co_mpletely wrong plgces. Theyj IKF, on the
The next experiment is extracted from the popular Victoriz?ther hand, which we formalized in Sec. V, has no problems

Park SLAM dataset [18], which offers logged range/bearin%%ﬂmating a large number of landmarks in this large-scale

measurements from a laser range sensor. To conform to { eriment, as seen in Fig. 8.
bearing-only theme of this paper, we appropriately disedird
range measurements offered within this dataset. Althohgh t
landmarks are nearby and therefore do not offer a challgngin Throughout this paper, we have ignored the problem of
low parallax test for the presented algorithms, there amata association. Although data association is in itself a
numerous landmarks. We have found that the failures of thmajor topic in the robotics community, we chose to focus
EKF emerge more quickly for a larger dataset. more on the estimation aspects of this problem with the

In Sec. IV we discuss the possibility that the inverseassumption that data association can be solved through
depth EKF update can result in a negative inverse-deptither methods (such as feature matching based on visual
value. This can be very problematic and, in fact, a striaghformation). We also demonstrated our algorithms through
implementation of the inverse-depth EKF will quickly resul offline experiments. This was to aid in the task of parameter
in a diverging state estimate during the first several sexontlning, and we believe that all algorithms in this paper wloul

VIl. CONCLUSION



easily run online (with a limit on the number of landmarks
in the state). [1]

For the most part, SLAM researchers have opted to
use multi-hypothesis filters, delayed initialization, odid ]
ferent parameterization of the state to solve the probleng
of undelayed bearing-only SLAM. The reason is that the
measurement model for bearing-only observations is highI)P’]
nonlinear, which causes the conventional extended Kalman
filter measurement update to diverge for large linearizatio
errors.

One contribution we have made is to show that the
traditional Kalman filter framework used in numerous other[5]
SLAM papers (where landmarks are encoded by thgito-
cation) can be adopted for undelayed bearing-only SLAM if{g]
properly implemented with an iterated measurement update.
Although the iterated Kalman filter is not new, we believe we
are the first to apply it to the problem of bearing-only SLAM.
The (,y) IKF method works well for outdoor experiments
that include far away landmarks and low parallax situations(®

One advantage of using an inverse-depth parameterization
is its ability to handle extreme low parallax observations.
But in our paper, we point out several situations in which®®
the inverse-depth method can run into problems. In this,case
an iterated form of the Kalman filter is again the solution. [10]

Our main contribution is to show that iterated methods are
beneficial for bearing-only SLAM. The parameterization tq11]
use is, in our opinion, a choice of the user. If a larger stat[e12]
size becomes problematic then they) IKF formalization
may be preferred. If robustness to extreme low parallax
situations is necessary then the iterated inverse depéhn fil(r[

. - [13]
would be more appropriate. Even though the proper choice
may depend on the specific application, our main point still
remains: iteration is crucial for accurate bearing-onhASL

In this paper, we apply Gauss-Newton method for numeE4]
ical optimization. The purpose of iteration is to minimize[15]
the objective cost function. Other methods of numerical
optimization would likely produce equivalent results,s@s  [1¢)
the Broyden method or the Levenberg-Marquardt algorithm.
We are currently investigating these different optimiaati 17]
methods. Additionally, although we have been unable t%
prove that numerical optimization of the cost function in{18]
troduced in Sec. Il will always converge upon th@bal
minimum, we believe it to be true (via extensive experimenta
evidence). If this is indeed true, then the iterated form of
the Kalman filter (for this specific problem) would produce
the optimal state mean update at every time-step. This, in
no way, suggests that the algorithms presented here would
be optimal filters. The covariance update is still based on
linearization and is an approximation. In future work welwil
try to prove the optimality of the update and are currently
investigating more appropriate covariance update mettmds
improve performance.

(4]
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